Физика движения парусной яхты.
Движение яхты происходи благодаря тому, что ветер взаимодействует с парусом. Анализ этого взаимодействия приводит к неожиданным, для многих новичков, результатам. Оказывается, что максимальная скорость достигается, вовсе не когда ветер дует точно сзади, а пожелание «попутного ветра» несет в себе совершенно неожиданный смысл.
Как парус, так и киль, при взаимодействии с потоком, соответственно, воздуха или воды, создают подъемную силу, следовательно, для оптимизации их работы можно применить теорию крыла.
ДВИЖУЩАЯ СИЛА ВЕТРА
Воздушный поток обладает кинетической энергией и, взаимодействуя с парусами, способен двигать яхту. Работа, как паруса, так и крыла самолета, описывается законом Бернулли, согласно которому увеличение скорости потока приводит к уменьшению давления. При перемещении в воздушной среде, крыло разделяет поток. Часть его обходит крыло сверху, часть снизу. Крыло самолета спроектировано так, что воздушный поток, проходящий над верхней стороной крыла движется быстрее, чем поток, который проходит под нижней частью крыла. Результат - давление над крылом значительно ниже, чем под. Разница давления и есть подъемная сила крыла (рис. 1а). Благодаря сложной форме, крыло способно генерировать подъемную силу даже в том случае, когда рассекает поток, который движется параллельно плоскости крыла.
Парус может двигать яхту только в том случае, если находится под некоторым углом к потоку и отклоняет его. Дискуссионным остается вопрос о том, какая часть подъемной силы связана с эффектом Бернулли, а какая является результатом отклонения потока. Согласно классической теории крыла подъемная сила возникает исключительно в результате разницы скоростей потока над и под ассиметричным крылом. Вместе с тем хорошо известно, что и симметричное крыло способно создавать подъемную силу, если установлено под определенным углом к потоку (рис. 1б). В обоих случаях угол между линией соединяющей переднюю и заднюю точки крыла и направлением потока, называется углом атаки.
Подъемная сила увеличивается с увеличением угла атаки, однако эта зависимость работает только при небольших значениях этого угла. Как только угол атаки превышает некий критический уровень и происходит срыв потока, на верхней поверхности крыла образуются многочисленные вихри, а подъемная сила резко уменьшается (рис. 1в).
На сайте NASA опубликованы очень интересные материалы о разных факторах оказывающих влияние на формирование крылом самолета подъемной силы. Там же представлены интерактивные графические модели,которые демонстрируют, что подъемная сила может формироваться и симметричным крылом за счет отклонения потока.
Парус, находясь под углом к воздушному потоку, отклоняет его (рис. 1г). Идущий через «верхнюю», подветренную сторону паруса, воздушный поток проходит более длинный путь и, в соответствии с принципом неразрывности потока, движется быстрее, чем с наветренной, «нижней» стороны. Результат – давление с подветренной стороны паруса меньше, чем с наветренной стороны.
При движении курсом фордевинд, когда парус установлен перпендикулярно к направлению ветра, степень увеличения давление с наветренной стороны больше, чем степень понижения давления с подветренной стороны, другими словами ветер больше толкает яхту, чем тянет. По мере того, как яхта будет поворачивать острее к ветру, это соотношение будет меняться. Так, если ветер дует перпендикулярно курсу яхты, увеличение давления на парус с наветренной стороны оказывает меньшее влияние на скорость, чем снижение давления с подветренной стороны. Другими словами парус больше тянет яхту, чем толкает.
Яхтсмены знают, что фордевинд далеко не самый быстрый курс. Если ветер той же силы дует под углом 90 градусов к курсу, яхта движется намного быстрее. На курсе фордевинд сила, с которой ветер давит на парус, зависит от скорости яхты. С максимальной силой ветер давит на парус стоящей без движения яхты (рис. 2а). По мере увеличения скорости давление на парус падает и становится минимальный, когда яхта достигает максимальной скорости (рис. 2б). Максимальная скорость на курсе фордевинд всегда меньше скорости ветра. Причин тому, несколько: во-первых, трение, при любом движении некоторая часть энергии расходуется на преодоление различных сил препятствующих движению. Но главное то, что сила, с которой ветер давит на парус, пропорциональна квадрату скорости вымпельного ветра, а скорость вымпельного ветра на курсе фордевинд равна разнице скорости истинного ветра и скорости яхты.
Курсом галфвинд (под 90º к ветру) парусные яхты способны двигаются быстрее ветра. В рамках этой статьи мы не будем обсуждать особенности вымпельного ветра, отметим только, что на курсе галфвинд, сила, с которой ветер давит на паруса, в меньшей степени зависит от скорости яхты (рис. 2в).
Основным фактором, который препятствует увеличению скорости, является трение. Поэтому парусники с небольшим сопротивлением движению способны достигать скорости, намного превышающей скорость ветра, но не на курсе фордевинд. Например, буер, за счет того, что коньки обладают ничтожным сопротивлением скольжения, способен разогнаться до скорости 150 км/ч при скорости ветра 50 км/ч и даже меньше.
The Physics of Sailing Explained: An Introduction
Авторы: Bryon D. Anderson
Опубликовано издательством Sheridan House, Inc., 2003
ISBN 1574091700, 9781574091700